化学

化学 化学
化学

【大学の物理化学】遷移状態理論(アイリングの式)による反応速度定数の導出過程について、わかりやすく解説!

衝突理論によって求めた反応速度定数は、反応が起こるための立体的な条件を考慮していないことで、実際より過大(過小)評価されることがありました。この記事では、遷移状態近傍の状態と反応物との間で平衡状態を考えることで、自然に立体的な条件も考慮された反応速度定数の定式化を行います。
化学

【大学の物理化学】分配関数と平衡定数の関係について、わかりやすく解説!

反応速度のつり合いから平衡定数を算出する方法は、反応機構が未知の反応には適用できません。この記事では、分配関数を用いることで、熱力学量のみによって、平衡定数を決定する一般的な方法について、まとめています。
化学

【大学の物理化学】エントロピーに対する並進、回転、振動の寄与について、わかりやすく解説!

単成分系で分子間相互作用がないときには、正準分配関数が分子分配関数で書けるため、系全体の熱力学量を分子運動の各自由度にどれだけ割り当てられるのかを考えることができます。この記事では、エントロピーと分子の並進、回転、振動運動の関係について、まとめています。
スポンサーリンク
化学

【大学の物理化学】平均エネルギーに対する並進、回転、振動、電子状態の寄与について、わかりやすく解説!

1つの分子がもつ平均のエネルギーは、それぞれの準位の占有数とエネルギーから期待値として求めることができます。この記事では、分子の並進、回転、振動、電子状態それぞれの分配関数から、各自由度に割り当てられた平均のエネルギーを求めます。
化学

【大学の物理化学】分子分配関数に対する並進、回転、振動、電子の寄与について、わかりやすく解説!

分子分配関数は、カノニカル分布において、全分子数を考えるために役立つほか、基底状態から熱的に励起が可能な状態の数を表すパラメータとして考えることができます。この記事では、分子分配関数に対する並進運動、回転運動、振動運動、電子状態による寄与を考えていきます。
化学

【大学の物理化学】拡散が反応速度に及ぼす影響について、わかりやすく解説!

気相より分子間相互作用の大きな液相では、反応系の分子同士の衝突頻度が小さくなるため、反応速度も遅くなると考えられます。しかし、衝突後のことを考えれば、多量の溶媒分子を押しのけないと、反応系の分子同士が離れられないため、気相よりも複雑な機構となることがあります。この記事では、液相における分子の拡散が反応速度に及ぼす影響についてまとめています。
化学

【大学の物理化学】拡散の起源、ストークス-アインシュタインの式の導出過程について、わかりやすく解説!

拡散は、孤立系としてエントロピーを増大させる現象であるため、熱力学的に解釈することができます。また、ランダムな熱運動を酔歩として統計力学的な見方もすることができます。この記事では、拡散現象の起源と、重要な式であるストークス-アインシュタインの式について、解説しています。
化学

【大学の物理化学】液体分子の運動、イオンの移動度と電気伝導率との関係について、わかりやすく解説!

液体分子は気体分子と異なり、分子間距離が短いことで分子間相互作用を無視することができません。それにより、粘性率は気体と全く異なる温度依存性をもつことになります。また、記事の後半でイオンの動きやすさが電気伝導率とどのように関係するのかを考え、電気的に中性な粒子も含めた粒子の拡散を理解するための理論を導きます。
化学

【大学の物理化学】気体分子の輸送(流束、拡散係数、熱伝導率、粘性率)について、わかりやすく解説!

流体(気体、液体)中では、分子やイオンが激しく運動していることで、運動量、エネルギー、電荷を輸送することができます。その挙動は、気体分子運動論を拡張することで考えることができ、反応速度を理解するためにもとても重要となります。この記事では、気体分子の輸送物性について、まとめています。
化学

【大学の有機化学】アルキンの命名法や物性、合成法、反応について、わかりやすく解説!

有機化学におけるアルキンの基本的な命名法と重要な性質、アルケニルアニオンを経由した合成法と隣接ジハロアルカンの脱離による合成法、Lindlar触媒や金属ナトリウムを利用した立体選択的な還元、アルキンに対する求電子付加反応について説明しました。
化学

【大学の物理化学】放射減衰過程(蛍光、燐光)と分子の解離機構について、わかりやすく解説!

多くの場合、紫外線や可視光を吸収して電子された分子は、周囲の分子の振動、回転、並進といった熱運動のエネルギーとして、励起エネルギーを放出します。ただし、一部の分子では光を放出しながら、基底電子状態まで緩和が起こります。また、吸収する光の波長によっては、結合の解離を引き起こし、電子スペクトルで連続帯が観測されることになります。
化学

【大学の物理化学】多原子分子の電子スペクトルについて、わかりやすく解説!

多原子分子においても、特定の基によって電子遷移に必要な光の吸収波数がだいたい決まるということが多いです。金属錯体においては、d軌道の分裂のほかに、中心原子と配位子との間で電子のやり取りが起こる場合もあります。この記事では、そんな多原子分子の電子スペクトルの特徴について、まとめてみました。
化学

【大学の物理化学】二原子分子の電子スペクトルについて、わかりやすく解説!

分子が紫外線や可視光を吸収すると、電子状態の遷移が起こります。この記事では、電子スペクトルの選択律や二原子分子の振動(フランク-コンドン原理)や回転の影響について、まとめています。
化学

【大学の物理化学】多原子分子の振動スペクトル(自由度、赤外・ラマン活性)について、わかりやすく解説!

分子を構成する原子が3つ以上あるとき、互いに独立となる振動のモードは、個々の結合の伸縮ではなく、原子の集団的な振動運動になります。この記事では、多原子分子に対する赤外分光法とラマン分光法により、得られるスペクトルの概形や選択律について、まとめています。
化学

【大学の物理化学】二原子分子の振動回転スペクトルについて、わかりやすく解説!

赤外線の吸収やラマン散乱を利用して、振動準位間の遷移について調べたいとき、気相の高分解能測定では、同時に回転遷移が起こることも考慮する必要があります。この記事では、二原子分子に関して、それぞれの測定手法における選択律やスペクトルの概形、ピークの波数などについてまとめています。